Ben Gilfedder: Theses offered
Bachelor's Theses offered | |
Oxygen consumption net ecosystem exchange my stream sediments in the Wiesent catchment Oxygen is the most important element in stream systems. It is used for respiration or organisms ranging from microbes to mammals, and is also responsible for a large part of organic carbon turnover in stream sediments. This project will look at the effects of fine sediment caused by agriculture on oxygen consumption in stream sediments in the Wiesent and determine how this relates to net ecosystem exchange in this river. If you are interested contact Ben Gilfedder in the Limnological Station Contact: Ben Gilfedder | |
Changes in DOC bioavailability in the Bayerischer Wald: Can we see differences between lowland peat and mountain forest bioavailability There is currently globally an increase in dissolved organic carbon in forested catchments. But where is this carbon coming from? Is it all the same, e.g. does it have the same bioavailability for (micro)organisms? The main aim of this project is to understand and source and ‘quality’ of this DOC a small catchment in the Bavarian Forest. We will use BSB experiments and measure total organic carbon to see if there is a difference in bioavailability between upland mixed forest DOC and lowland peat dominated DOC. Contact: Ben Gilfedder | |
Mapping and quantifying groundwater and nutrient fluxes and sources in the Wiesent Catchment: using natural tracers in a karst system The Wisent catchment, located in the Fränkische Schweiz, is part of a new project aimed at understanding the effects of groundwater on river nutrient sources in a changing climate. In this project we aim to map and quantify groundwater fluxes to the Wiesent and determine if this groundwater is an important contributor to nitrate in the river. There is currently very little understanding about how and where karst systems connect to river systems because of their complex geology, and so this project would be an important contribution to understanding the role of subsurface springs for delivering water and nutrients to rivers.
Contact: Ben Gilfedder | |
Untersuchung der Stoffumsätze in der hyporheischen Zone innerhalb einer Riffle-Pool-Sequenz am Roten Main Contact: Ben Gilfedder, Stefan Peiffer |